110 (23.71, 97 (loo), 96 (30.5), 82 (13.6),70 (32.6). Anal. Calcd for C&,N: C, **76.74;** H, **12.08;** N, **11.19.** Found: C, **76.46;** H, **12.21;** N, **11.08.**

2-Hexyl-6-methyl-2,3,4,5-tetrahydropyridine (6e): yield 136 mg **(15%);** 'H NMR (CDClJ *b* **0.88 (3** H, **t,** J ⁼**6.0** *Hz),* **1.02-1.83 (14** H, m), **1.89 (3** H, d, J = **2.0** Hz), **2.08 (2** H, **m), 3.25 (1** H, m); IR (neat) 1660, 1376 cm⁻¹; MS m/z (relative intensity) 181 (18.8, M+), **166 (4.7), 152 (33.2), 138 (lO.l), 124 (ll.O), 110 (loo), 97 (97.1), 96 (96.4), 82 (40.4). Anal. Calcd for C₁₂H₂₂N: C, 79.49; H, 12.79;

C**₁₂H₂₂N: C, 79.49; H, 12.79; N, **7.73.** Found: C, **79.21;** H, **13.04;** N; **7.61.**

5-Ethyl-2-pentyl-1-pyrroline (Sf): yield **601** mg **(72%);** 'H NMR (CDCl₃) *δ* 0.87 (3 H, t, $J = 6.7$ Hz), 0.93 (3 H, t, $J = 7.0$ Hz), **1.30-1.90 (8** H, m), **2.05 (2** H, **m), 2.33 (2** H, t, J ⁼**7.5** Hz), **2.45 (2** H, **m), 3.88 (1** H, m); **IR** (neat) **1642,1380,1315** cm-'; MS m/z (relative intensity) **166 (2.2,** M+ - **11, 152 (2.3), 138 (33.0), 124 (46.2), 111 (91.6), 110 (8.1), 96 (15.51, 82 (100).** Anal. Calcd for C₁₁H₂₁N: C, 78.97; H, 12.65; N, 8.37. Found: C, 79.08; H, **12.84;** N, **8.15.**

6-Methyl-2-undecyl-2,3,4,S-tetrahydropyridine (60: yield **527** mg **(42%);** lH NMR (CDC13) *b* **0.88 (3** H, t, **J** = **6.5** Hz), **1.10-1.80 (24** H, m), **1.92 (3** H, d, **J** = **2.0** Hz), **2.08 (2** H, **m), 3.25 (1** H, m); IR (neat) **1662, 1370** cm-'; MS *m/z* (relative intensity) **251 (37.5,** M+), **236 (3.8), 222 (7.9), 208 (9.0), 194 (5.6), 180 (7.41, 166 (12.7), 152 (41.4), 138 (15.1), 124 (11.3), 110 (loo), 97 (88.4).** Anal. Calcd for C17HaN: C, **81.20;** H, **12.23;** N, **5.57.** Found: C, **80.96;** H, **12.25;** N, **5.57.**

Reaction of 4-Alkynylamine 2 **in** the Presence of Pd(I1). 4-Dodecynylamine (2a, **500 mg, 2.76** mmol) was treated in refluxing acetonitrile (20 mL) in the presence of PdCl₂ (25 mg, 0.14 mmol, **5** mol %) for **8** h. The reaction mixture was diluted with ether **(50 mL)** and washed with a **1:l** mixture of aqueous NH3 and brine (50 mL). The ethereal layer was dried (Na₂SO₄) and concentrated to give a mixture of 2-octyl-1-pyrroline (5a) and **6-heptyl-2,3,4,5-tetrahydropyridine** (6a) in quantitative yield. NMR analysis of the product proved the ratio of Sa and 6a **was (9.66** H, m), **1.59 (2** H, m), **1.85 (0.83** H, quint, **J** = **7.3** Hz), **1.86 (0.83** H, quint, J ⁼**7.3** Hz), **2.13 (1.36** H, **m), 2.32 (1.66** H, tt, **J** = **1.7,7.6** Hz), **2.46 (1.66** H, tt, **J** = **1.7, 7.6** Hz), **3.54 (0.34** H, **m), 3.80 (1.66** H, tt, J ⁼**1.7, 7.3** Hz). **83:17:** ¹H NMR (CDCl₃) δ 0.87 (3 H, t, $J = 6.4$ Hz), 1.20-1.48

The same treatment of **1-methyl-4-undecynylamine** (2b) **as** above gave a mixture of **2-heptyl-5-methyl-1-pproline** (5b) and **6-hexyl-2-methyl-2,3,4,5-tetrahydropyridine** (6b) quantitatively in the ratio of 80:20: ¹H NMR (CDCl₃) δ 0.88 (3 H, t, $J = 6.0$ Hz), **1.23 (0.6** H, d, **J** = **6.8** Hz), **1.25 (2.4** H, d, **J** = **6.8** Hz), **1.20-1.75 (10.8** H, **m), 2.13 (2** H, **m), 2.36 (1.6** H, m), **2.50 (1.6** H, m), **3.45 (0.2** H, m), **4.06 (0.8** H, m).

Regirtry **No.** la, **135469-67-9;** la alcohol, **55182-73-5;** lb, **14916-80-4;** Id, **135469-69-1;** Id alcohol, **135469-88-4;** le, **135469-70-4;** le alcohol, **10229-11-5;** lf, **135469-77-1;** lf alcohol, **135469-85-1;** 2a, **135469-71-5;** 2a alcohol, **92051-75-7;** 2b, **135469-72-6;** 2b ketone, **132716-18-8;** 3a, **112218-11-8;** 3a alcohol, **88109-70-0;** 3b, **135469-73-7;** 3b ketone, **135469-84-0;** 3c, **135504-80-2;** 3e, **135469-76-0;** 3e alcohol, **69936-53-4;** 3f, **135469-78-2;** 3f alcohol, **135469-86-2;** 4, **135469-79-3; 4** alcohol, **37011-88-4;** 5a, **135469-80-6;** 5b, **128741-64-0;** 5c, **64319-86-4;** 5d, **700-91-4;** 5f, **135469-83-9;** 6a, **5832-27-9;** 6b, **135469-81-7;** 6c, 1604-01-9; 6e, 135469-82-8; 6f, 83019-11-8; PdCl₂(MeCN)₂, 14592-56-4; n -C₅H₁₁C=CH, 628-71-7. **135469-68-0; lb** alcohol, **135469-87-3;** IC, **98551-99-6;** IC alcohol, **135469-74-8;** 3~ alcohol, **41547-21-1;** 3d, **135469-75-9;** 3d alcohol,

Synthesis of Substituted Furans by Palladium-Catalyzed Cyclization of Acetylenic Ketones

Yukitoshi Fukuda,' Hiroshi Shiragami, Kiitiro Utimota,* and Hitosi Nozaki

Department *of* Indwtrial Chemistry, Faculty *of* Engineering, Kyoto University, Yoshida, Kyoto *606,* Japan

Received March *19, 1991*

Palladium-catalyzed cyclization of β , γ -acetylenic ketones gives furans by intramolecular oxypalladation and subsequent protodemetalation. 3-Allylfurans were exclusively obtained by trapping the intermediate 3-furylpalladium species with allyl halides in the presence of 2,2-dimethyloxirane **as a** proton scavenger.

Substituted furans have been usually synthesized either by intramolecular reactions of 1,4-diketones or by the introduction of substituents to furan rings.¹⁻³ Various modifications of these methods have been extensively studied.⁴⁻⁷ The recently reported Ta- or Nb-mediated coupling reaction of an alkyne, an aldehyde, and an isocyanides **as** well **as** the **&(I)-catalyzed** cyclization of allenyl ketones⁹ have opened novel methodologies for the synthesis of 2,3,5-trisubstituted furans. Danheiser et al. reported another synthesis of substituted furans by the reaction of allenylsilanes with acid chlorides in the presence of aluminum chloride.1° Furans have **also** been prepared from acetylenic alcohols;¹¹⁻²³ 2,5-dimethylfuran was prepared from 3-hexen-5-yn-1-ol,¹¹ and 2,5-di- or 2,3,5-trisubstituted furans were obtained from 2-methoxy-3-alkyn-1-01s by means of palladium catalysis.²⁴ A key step of the latter method is **an** intramolecular oxypalladation of the starting acetylenic alcohols to give 3-furylpalladium intermediates.

^{&#}x27;On leave from Kyowa Yuka *Co.* Ltd., Yokkaichi, Mie, Japan.

The same intramolecular oxypalladation was expected to proceed from an appropriate acetylenic ketone when an

0 ___
R¹C≣CCHR²CR

1

enol or a hydrate of the acetylenic ketone could react with palladium catalysts.26 This paper describes in detail that furans are prepared from easily accessible β , γ -acetylenic ketones by either intramolecular oxypalladation-proto-

- ~~ ~ (1) Sergent, M. V.; Cree , T. M. Furans *in Comprehensive Organic Chemistry;* Barton, *S.* D., &lis, W. D., Eds.; Pergamon: Oxford, 1979; Vol. 4, pp 693-744.
	-
- (2) Tanis, S. P. *Tetrahedron Lett.* 1982,23, 3115. (3) Campen, M. C. V.; Meisner, D. F.; Parmeter, S. M. J. *Am. Chem.*
- (4) Mukaiyama, T.; Ishihara, H.; Inomata, K. *Chem. Lett.* 1975,527. *SOC.* 1948, 70,2296.
- (5) Ishibanhi, H.; Aki, S.; Choi, H.-D.; Nakagawa, H.; Tamura, Y. *Tetrahedron Lett.* 1983.24.3877.
- (6) Minami, I.; Yuh&a, **M.;** Watanabe, H.; Tsuji, J. *J. Organomet. Chem.* 1987,334,225.
- (7) Srikrbhna, **A.;** Sunderbabu. C. *Tetrahedron Lett.* 1987.50.6393. **(8)** Takai, K.; Tezuka, M.; Kakoka, Y.; Utimoto, K. J. *Org. Chem.* 1990,55,6310.
- (9) Marshall, J. A.; Wang, **X.** J. *Org. Chem.* 1991,56,960.
- (10) Danheiser, R. L.; Stoner, E. J.; Koyama, H.; Yamashita, D. S.; Klade, C. A. J. *Am. Chem. SOC.* 1989,111,4407.
- (11) Heilbron, I. M.; Jones, E. R. H.; Smith, P.; Weedon, B. C. L. *J. Chem. Soc.* 1946, 54.
- (12) **Bell, I.;** Jonea, E. **R.** H.; Whiting, M. C. *J. Chem.* Soc. 1967,2597. **(13)** Jacobs, T. L.; Dankner, D.; Dankner, A. R. J. *Am. Chem. SOC.* 1968,80,864.
- (14) Landor, S. **R.;** Pepper, E. S. J. *Chem. SOC.* **C** 1966, 2283.
- (15) Krasnaya, Zh. A.; Yufit, S. S.; Levchenko, T. S.; Kuchrov, V. F. *Tetrahedron* 1967, 23, 3687.
	- (16) Miller, D. *J. Chem. SOC.* **C** 1969, 12.
	- (17) BBchi, G.; Wuest, H. J. *Org. Chem.* 1969,34, 857.
- (18) Holand, S.; Mercier, F.; Coff, N. La.; Epeztein, E. Bull. *Soc. Chim. Fr.* 1972,4357.
- (19) Narayanan, K. V.; Balasubramanian, K. K.; Chandrasksran, S.; Ramani, S.; Swaminathan, S. J. *Chem. SOC. C.* 1971, 2472.
- (20) Heilbron, I. M.; Jones, E. R. H.; Sondheimer, F. J. *Chem. SOC.* 1947, 1586.
- (21) Venue-Danilova, **E.** D.; Albitakaya, V. M. *Zhur. Obshch. Khim.* 1962,24879, 1611; *Chem. Abetr.* 1953,47,86834 l964,48,2566c.
- (22) Pavalova, **L.** A. *Zhur. Obshch. Khim.* 1965,25,1471; *Chem. Abstr.* lB66,50,4898c.
- (23) Fabrycy, A.; Wichert, **Z.** Rocr. *Chem.* 1968,42,35; *Chem. Abstr.* l968,69,3583b.
- (24) **Wakahsyashi,** Y.; Fukuda, **Y.;** Shuagami, **H.;** Utimoto, **K.;** Nuzaki, H. *Tetrahedron* 1985, 41, 3655.
- (25) The Pd(II)-catalyzed synthesis of furans from β, γ -acetylenic ke-
tones was preliminarily reported: Utimoto, K. Pure Appl. Chem. 1983, tones was preliminarily reported: Utimoto, K. *Pure Appl. Chem.* 1983, 55, 1845. A Pd(0) catalyst was also employed for the synthesis of furan although the yields were low. Sheng, **H.;** Lin, **5.;** Huang, *Y. Synthesis* 1987, 1022.

Table **11.** 3-Allylfurans **7** from B,y-Acetylenic Ketones **1**

entry	allyl halide	product	yield [®] (%)	note
1	C,	C_6H_{13} 머	40^{b}	c
$\boldsymbol{2}$	CI	C_6H_{12} CH,	70	d
3	CI	C_6H_{13} CH3	67	d
4	CI	C_6H_{13} ٥н,	83	d,e
5	cı	C_6H_{13} CH,	70	d

^aIsolated yield. Determined by **'H NMR.** 2-Methylosirme **as** the proton scavenger; 2-hexyl-5-methylfuran (33%) **was** formed **as** byproduct. * 2,2-Dimethyloxirane **aa** the proton scavenger; 2 hexyl-5-methylfuran was not detected. $E.Z = 6:4$.

Scheme **111**

$$
C_{6}H_{13}C\equiv CC(CH_{3})_{2}CCH_{3} \xrightarrow{\text{MgCl}_{2}} C_{6}H_{13}CCH_{2}C(CH_{3})_{2}CCH_{3}
$$
\n
$$
C_{6}H_{13}CCH_{2}C(CH_{3})_{2}CCH_{3}
$$
\n(95%)

$$
C_{6}H_{13} \longrightarrow C_{CH_{3}}
$$
\n(isolated yield. b Determined by 1H NMR. c 2-Methyloxirané a
\nproton scavenger; 2-haxyl-5-methylfuran (33%) was formed as
\nproduct. d 2,2-Dimethyloxirané as the proton scavenger; 2.
\n V l-5-methylfuran was not detected. $^eE:Z = 6:4$.

\nScheme III

\n\n $P_{13}C \cong CC(H_{3})_{2}CCH_{3}$ \n

\n\n $C_{8}H_{13}CCH_{2}C(CH_{3})_{2}CCH_{3}$ \n

\n\n $C_{8}H_{13}CCH_{2}CCH_{3}$

depalladation giving 2,5-disubstituted furans or oxy**palladation-carbodepalladation** with allyl halides affording 2,3,5-trisubstituted ones (Scheme I).%

Substituted furans **6** were formed in good to excellent yields from β , γ -acetylenic ketones 1 by treatment with palladium(I1) catalysts in acetonitrile containing a few percent of water. Furans were **also** obtained in **good** yields by the reaction in anhydrous THF. In the former case, formation of furans could be explained by palladium- (11)-catalyzed cyclization of either a hydrate **2** or an enol 4 of β , γ -acetylenic ketone 1. In the later case, however, furan formation might proceed via cyclization of the enol **4.** Results are summarized in Table I.

In the above-described transformations, furans were produced by the protonolysis of intermediary 3-furylpalladiums. During the sequence of transformations, the

⁽²⁶⁾ Utimoto, K.; Lambert, C.; Fukuda, Y.; Shiragami, H.; Nozaki, H. *Tetrahedron Lett.* 1984,25,5423.

Reference 32. Reference 33. **e** Reference 34. Reference 35. **e** Reference 36.

valency of palladium is unchanged and the Pd(I1) species is regenerated. Since a 3-furylpalladium intermediate obtained from 2-methoxy-3-alkyn-1-01 has been utilized as reactive species,²⁴ reactions of the organopalladium intermediate **5** with electrophiles were examined. Allyl halides reacted exclusively on the γ -position with organopalladium intermediates to give 3-allylated 2,5-disubstituted furans. It is noteworthy that allylated furans were obtained exclusively when 2,2-dimethyloxirane was used **as** a proton scavenger. On the contrary, similar treatment of 2-methoxy-3-alkyn-1-01s gave considerable amounts of protonated furans in addition to the allylated ones (Scheme II).24

As starting materials, β, γ -acetylenic ketones 1 can be obtained in excellent overall yields by the coupling of 1-lithio-1-alkynes with oxiranes 26,27 followed by oxidation, this allylative cyclization reaction provides various types of furans from easily accessible 1-alkynes, oxiranes, and allyl halides (Table 11).

On the other hand, in the case of β , γ -acetylenic ketones having no α -hydrogens, furan formation could not be expected, even though intramolecular oxypalladation of the corresponding hydrate is conceivable. Reaction of such acetylenic ketones with water in the presence of the Pd(I1) catalyst gave 1,4-diketones under mild conditions (Scheme 111).

y,b-Acetylenic ketones are **also** regioselectively hydrated via assistance of carbonyl oxygen,²⁸ but analogous treatment of α , β -acetylenic ketones with water resulted in the recovery of the starting material with formation of a small amount of tarry material. Examples of regioselective hydration of γ , δ -acetylenic ketones giving 1,4-diketones are summarized in Table 111.

In conclusion, substituted furans were synthesized from corresponding β, γ -acetylenic ketones under the catalytic action of palladium(II) compound. Treatment of β , γ acetylenic ketones with allyl halides in the presence of palladium(I1) catalyst and 2,2-dimethyloxirane **as** a proton scavenger afforded 3-allylfurans exclusively. The reaction of γ , δ -acetylenic ketones or β , γ -acetylenic ketones with no α -hydrogens in aqueous acetonitrile gave corresponding l,4-diketones by the catalysis of palladium(I1) compounds.

Experimental Section

'H **NMR** spectra were measured at 200 **MHz.** *'3c NMR* spectra were measured at 100 MHz.

Preparation of 3-Alkyn-1-01s (General Procedure). To a THF-hexane solution of 1-lithio-1-alkyne prepared from 1-alkyne (10 mmol), n-BuLi (5.6 **mL** of 1.86 M solution in hexane, 10 mmol), and 10 mL of THF was added trimethylgallium (1 mL of 0.8 M solution in hexane, 0.8 mmol, 0.08 equiv to 1-alkyne) at 0 "C. To the reaction mixture maintained at 0 "C was added oxirane (12 mmol), and the whole was stirred at rt. The reaction mixture was worked up with brine and extracted with ether. The ethereal solution was washed (brine), dried (Na_2SO_4) , and concentrated affording 3-alkyn-1-01. The product was purified by column chromatography (silica gel, 33% EtOAc/hexane).

4-Undecyn-2-01: yield 1.46 **g** (87%); 'H NMR (CDCl3) *6* 0.89 $(3 H, t, J = 6.7 Hz)$, 1.24 $(3 H, d, J = 6.2 Hz)$, 1.20-1.60 $(8 H, t)$ m), 2.15 (2 H, dt, J = 6.7, 2.4 Hz), 2.20 (1 H, br s), 2.32 (2 H, tt, $J = 2.4, 6.6$ Hz), 3.90 (1 H, tq, $J = 5.8, 6.2$ Hz); IR (neat) 3600-3000, 1150, 1080, 940 cm⁻¹. Anal. Calcd for C₁₁H₂₀O: C, 78.51; H, 11.98. Found: C, 78.41; H, 12.22.

2-(1-Octynyl)cyclohexanol: yield 1.48 g (71%); ¹H NMR $(CDCl_3)$ δ 0.91 (3 H, t, J = 6.5 Hz), 1.08-1.85 (15 H, m), 1.99 (2 H, m), 2.17 (2 H, br t, $J = 6.2$ Hz), 2.36 (1 H, d, $J = 2.0$ Hz), 3.37 (1 H, ddt, J ⁼2.0,3.0,9.5 **Hz);** IR (neat) 3600-3100, 1285, 1085 cm⁻¹. Anal. Calcd for $C_{14}H_{24}O: C$, 80.71; H, 11.61. Found: C, 80.54, 11.84.

2-(1-Butynyl)cyclohexanol: yield 1.22 g (80%); 'H NMR $(CDCI_3)$ δ 1.16 (3 H, t, J = 7.5 Hz), 1.20–2.10 (9 H, m), 2.20 (1) H, m), 2.21 (2 H, dq, $J = 2.0$, 7.5 Hz), 3.41 (1 H, ddd, $J = 2.5$, 9.5,9.5 **Hz);** IR (neat) 3650-3100,1310,1275,1075 cm-'. Anal. Calcd for C₁₀H₁₆O: C, 78.90; H, 10.59. Found: C, 78.60; H, 10.85.

Preparation of β, γ -Acetylenic Ketones 1 (General Procedure).²⁹ The procedure for the preparation of 4-undecyn-2-one is representative. To a solution of 4-undecyn-2-01 (1.01 g, 6.0 mmol) in acetone (50 mL) was added Jones reagent³⁰ (prepared by dissolving 23.67 g of CrO_3 in 23 mL of concd sulfuric acid and diluting with water to a volume of 100 mL) dropwise at 0 °C. The reaction mixture was stirred at $0 °C$ for 1 h and rt for additional 1 h. The excess reagent was reduced with 2-propanol (5 mL) at 0 "C and the whole was stirred at rt for 10 min. The reaction mixture was concentrated in vacuo, and the residue was washed with ether (30 mL) five times. The ether extract was dried $(Na₂SO₄)$ and concentrated. Chromatographic purification (silica gel, 20% EtOAc/hexane) of the concentrate gave 4undecyn-2-one (619 mg, 3.37 mmol, 62% yield). Similar oxidation of $2-(1-\infty$ tynyl)cyclohexanol and 2-(1-butynyl)cyclohexanol gave 2-(1-octyny1)cyclohexanone **(lb,** 67% yield) and 2-(l-butynyl)cyclohexanone (IC, 58% yield), respectively. Acetylenic ketones 1 were soon used for the furan synthesis after the purification.

4-Undecyn-2-one (1a): yield 619 mg (62%); ¹H NMR (CDCl₃) δ 0.91 (3 H, t, $J = 7.0$ Hz), 1.25–1.75 (8 H, m), 2.23 (2 H, tt, $J =$ 6 0.91 (3 H, t, J ⁼7.0 Hz), 1.25-1.75 **(8** H, m), 2.23 (2 HI tt, J ⁼2.5, 7.1 Hz), 2.30 (3 H, **81,** 3.28 (2 HI t, J ⁼2.5 **Hz);** 13C NMR 203.4; IR (neat) 1723, 1360, 1225, 1160 cm-'. Anal. Calcd for **Cl1Hl80:** C, 79.46; H, 10.92. Found: C, 79.38; H, 10.95. (CDC13) 6 14.1, 18.8, 22.6, 28.5, 28.6, 28.8, 31.6, 35.0, 72.4, 85.1,

 $2-(1-Octynyl)$ cyclohexanone (1b): yield 664 mg (67%); ¹H NMR (CDCl₃) δ 0.90 (3 H, t, $J = 6.0$ Hz), 1.18-2.15 (14 H, m), 2.21 (2 H, dt, $J = 2.0$, 5.0 Hz), 2.25 (1 H, m), 2.70 (1 H, m), 3.30 (1 H, m); 13C NMR (CDClJ 6 12.7,12.9,14.0, 19.1, 22.6,28.3,28.4, 31.6, 33.5,33.7,45.2, 80.3,96.2, 189.1; IR (neat) 1710, 1120 cm-'. Anal. Calcd for $C_{14}H_{22}O: C, 81.50; H, 10.75.$ Found: C, 81.31; H, 10.84.

 $2-(1-Butynyl)$ cyclohexanone (1c): yield 572 mg (58%) ; ¹H NMR (CDCl₃) δ 1.12 (3 H, t, J = 7.0 Hz), 1.20–1.35 (8 H, m), 2.20

⁽²⁹⁾ Brandsma, L.; Verkruijme, H. D. *Synthesis of Acetylenes, All-* **(30)** Bowden, K.; Heilbron, I. M.; Jones, E. R. H.; Weedon, B. C. L. *enes, and Cumulenes;* Elsevier: Amsterdam, **1981;** p **236.**

⁽²⁷⁾ Yamaguchi, M.; Hirao, I. *Tetrahedron Lett.* **1983,** *24,* **391. (28)** Imi, K.; **Imai,** K.; **Utimoto, K.** *Tetrahedron Lett.* **1987,28,3127.**

J. Chem. SOC. **1946,39.**

 $(2 H, dq, J = 2.5, 7.0 Hz)$, 3.40 $(1 H, dt, J = 2.5, 10.0 Hz)$; ¹³C 188.0; IR (neat) 1710, 1120 cm⁻¹. Anal. Calcd for $C_{10}H_{14}O$: C, 79.95; H, 9.39. Found: C, 80.20; H, 9.65. NMR (CDC13) **6** 12.7, **12.8,23.4,24.0,33.6,33.7,45.0,80.1,96.0,**

Preparation of Furans 6 from B,y-Acetylenic Ketones **1** (General Procedure). Acetylenic ketone (1,3 mmol) was dissolved in 3 mL of acetonitrile containing 0.3 mL of water or anhydrous THF. To this solution was added $PdCl₂(MeCN)₂$ (39 mg, 0.15 mmol, 0.05 equiv), and the whole was heated at reflux for 1-3 h. The reaction mixture was worked up with brine and extracted with ether. The ethereal solution was dried (Na_2SO_4) and concentrated. Column chromatography (silica gel, hexane) of the residue afforded the corresponding furan 6.

2-Hexyl-5-methylfuran (6a):³¹ yield 393 mg (79%); ¹H NMR (CDCl₃) δ 0.90 (3 H₂ t, J = 6.9 Hz), 1.25-1.42 (6 H₂ m), 1.63 (2 H, quintet, J ⁼6.0 Hz), 2.22 (3 H, **s),** 2.51 (2 H, t, J ⁼7.5 Hz), 5.70 (2 H, **s);** IR (neat) 1569, 1220, 1020 cm-'. Anal. Calcd for C11H180: C, 79.74; H, 10.92. Found: C, 79.66; H, 11.15.

2-Hexyl-4,5,6,7-tetrahydrobenzofuran (6b): yield 556 mg $(6 H, m)$, 1.50–1.90 $(6 H, m)$, 2.37 $(2 H, t, J = 6.0 Hz)$, 2.52 $(4 H, t, J = 6.0 Hz)$ t, J = 8.0 Hz), 5.78 (1 H, *8);* **IR** (neat) 1560,1438,1219 cm-'. Anal. Calcd for C₁₄H₂₂O: C, 81.50; H, 10.75. Found: C, 81.34; H, 10.84. (90%); ¹H NMR (CDCl₃) δ 0.90 (3 H, t, $J = 6.0$ Hz), 1.20-1.50

2-Ethyl-4,5,6,7-tetrahydrobenzofuran (6c): yield 338 mg $(6 \text{ H}, \text{m})$, 2.33 (2 H, tt, $J = 6.0$, 2.0 Hz), 2.52 (2 H, t, $J = 7.5 \text{ Hz}$), 5.78 (1 H, **s);** IR (neat) 1575, 1440, 1220 cm-'. Anal. Calcd for $C_{10}H_{14}O: C$, 79.95; H, 9.39. Found: C, 79.65; H, 9.50. (75%); ¹H NMR (CDCl₃) δ 1.19 (3 H, t, J = 7.6 Hz), 1.62-1.90

Preparation of 3-Allylfuran 7 from β, γ -Acetylenic Ketone **1** (General Procedure). To **a** solution of acetylenic ketone **9** (3 mmol) in allyl halide (10 equiv) and oxirane (50 equiv) was added $PdCl₂(MeCN)₂$ (0.05 equiv), and the reaction mixture was stirred at rt for 3 h. The product was purified by column chromatography (silica gel, hexane) of the concentrated reaction mixture.

3-Allyl-2-hexyl-5-methylfuran (7a): yield 433 mg (70% 1; ¹H NMR (CDCl₃) δ 0.88 (3 H, t, J = 6.1 Hz), 1.17-1.40 (6 H, m), 1.48-1.68 (2 H, m), 2.21 (3 H, t, $J = 1.0$ Hz), 2.50 (2 H, t, $J = 7.5$ Hz), 3.05 (2 H, dt, $J = 6.6$, 3.0 Hz), 4.96 (1 H, ddt, $J = 3.1$, 10.0, 3.0 Hz), 5.04 (1 H, ddt, $J = 3.1$, 16.9, 3.0 Hz), 5.78 (1 H, q, $J =$ 1.0 Hz), 5.89 (1 H, ddt, $J = 10.0$, 16.9, 6.6 Hz); IR (neat) 3080, 1.0 Hz), 5.89 (1 H, ddt, $J = 10.0$, 16.9, 6.6 Hz); IR 1640, 1580, 995, 907 cm⁻¹; HRMS m/z calcd for $\rm C_{14}H_{22}O$ 206.1669, found 206.1580. Anal. Calcd for $\rm{C_{14}H_{22}O:}$ C, 81.50; H, 10.75. Found: C, 81.66; H, 10.79.

3-(2-Methyl-2-propenyl)-2-hexyl-5-methylfuran (7b): yield 442 mg (67%); ¹H NMR (CDCl₃) δ 0.88 (3 H, t, $J = 6.1$ Hz), 1.15-1.37 (5 H, m), 1.43-1.63 (3 H, m) 1.66 (3 H, **s),** 2.18 (3 H, **s),** 2.48 (2 H, t, J ⁼7.8 Hz), 2.96 (2 H, **s),** 4.70 (1 H, m), 4.74 (1 H, m), 5.47 (1 H, **s);** IR (neat) 3075,1660,890 cm-'; HRMS *m/z* calcd for $C_{15}H_{24}O$: 220.1825, found 220.1769. Anal. Calcd for $C_{15}H_{24}O: C, 8\overline{1.76}$; H, 10.98. Found: C, 81.73; H, 11.16.

3-(2-Butenyl)-2-hexyl-5-methylfuran (7c): yield 548 mg (6 H, m), 1.48-1.61 (2 H, m), 1.69 (3 H, m), 2.20 (3 H, **s),** 2.50 (1.2 H, t, $J = 7.5$ Hz), 2.55 (0.8 H, t, $J = 7.5$ Hz), 2.98 (1.2 H, m), 3.05 $(0.8 \text{ H, br d}, J = 6.0 \text{ Hz})$, 5.48 (2 H, m) , 5.77 (1 H, s) $(E/Z \text{ mixture})$ in a ratio of $E:Z = 6:4$); IR (neat) 3020, 1580, 970 cm⁻¹; HRMS *m/z* calcd for C16H24O 220.1825, found 220.1753. Anal. Calcd for $C_{15}H_{24}O$: C, 81.76; H, 10.98. Found: C, 81.63; H, 11.05. (83%); ¹H NMR (CDCl₃) δ 0.88 (3 H, t, J = 6.1 Hz), 1.18-1.42

34 **l-Methyl-2-propenyl)-2-hexyl-5-methylfuran** (7d): yield 462 mg (70%); ¹H NMR (CDCl₃) δ 0.87 (3 H, t, J = 6.8 Hz), 1.21 $(3 H, \overline{d}, J = 7.2 Hz)$, 1.20-1.37 (6 H, m), 1.46-1.71 (2 H, m), 2.18 (3 H, **s),** 2.51 (2 H, d, J = 7.4 Hz), 3.28 (1 H, m), 4.96 (1 H, ddd, $J = 1.9, 1.9, 10.3$ Hz), 4.99 (1 H, ddd, $J = 1.9, 1.9, 17.2$ Hz), 5.79 (1 H, **s),** 5.92 (1 H, ddd, *J* = 6.4, 10.3, 17.2 Hz); IR (neat) 3080,

(31) Akimoto, I.; Suzuki, A. *Synthesis* 1**979**, 146.
(32) Nokami, J.; Sonoda, T.; Wakabayashi, S. *Synthesis* 1983, 763.
(33) Saha, M.; Nicholas, K. M. *Isr. J. Chem.* 1984, 24, 105.

1640, 1580, 1262, 917, 800 cm⁻¹; HRMS m/z calcd for C₁₅H₂₄O 220.1825, found 220.1772. Anal. Calcd for $C_{15}H_{24}O: C, 81.76;$ H, 10.98. Found: C, 81.47; H, 11.00.

Preparation of **3,3-Dimethyl-4-undecyn-2-one.** To a THF solution of methyl iodide (1.14 g, 8 mmol, 2 equiv) and 4-undecyn-2-one (332 mg, 2 mmol) prepared **as** above was added 8 mL of 0.5 M THF-hexane solution of LDA (4 mmol, prepared from diisopropylamine (608 mg, 6 mmol) and butyllithium (4.4 mL of 1.35 M in hexane solution, 6 mmol) in 6.8 mL of THF) dropwise at -78 °C. The whole was stirred at -78 °C for 1 h and at rt for an additional 4 h. The reaction mixture was hydrolyzed with saturated aqueous NH₄Cl, extracted with ether, dried (Na₂SO₄), and concentrated. Chromatographic purification (silica gel, 20% EtOAc/hexane) of the residue gave 248 mg of 3,3-dimethyl-4 undecyn-2-one (64% yield). 2-(1-Butynyl)-2-methylcyclohexanone was prepared from **2-(l-butynyl)cyclohexanone** by an analogous procedure in 60% yield.

3,3-Dimethyl-4-undecyn-2-one: ¹H NMR (CDCl₃) δ 0.91 (3) H, t, J ⁼6.6 Hz), 1.21-1.57 (8 H, m), 1.33 (6 H, **s),** 2.18 (2 H, t, J ⁼6.9 Hz), 2.34 (3 H, *8);* IR (neat) 2250, 1721, 1380, 1353, 1235, 1126 cm⁻¹. Anal. Calcd for C₁₃H₂₂O: C, 80.35; H, 11.41. Found: C, 80.10; H, 11.62.

24 **l-Butynyl)-2-methylcyclohexanone:** 'H NMR (CDC13) 6 1.15 (3 H, t, J ⁼7.2 Hz), 1.26 (3 H, **s),** 1.48-1.78 (4 H, m), 1.99-2.32 (3 H, m), 2.20 (2 H, q, $J = 7.2$ Hz), 2.98 (1 H, ddd, $J = 6.0$, 13.2, 13.2 Hz); **IR** (neat) 1724, 1333, 1319, 1282, 1259, 1234, 1155,1113,1094,1077,1062,982,911,863,822 cm-'. **Anal.** Calcd for $C_{11}H_{16}O$: C, 80.44; H, 9.83. Found: C, 80.53; 9.79.

5-Dodecyn-2-one. Prepared by the reaction of 4-undecynoic acid with methyllithium (2.5 equiv) in ether: ¹H NMR (CDCl₃) δ 0.91 (3 H, t, $J = 6.5$ Hz), 1.18–1.58 (8 H, m), 2.12 (2 H, tt, $J =$ ⁶0.91 (3 H, t, J = 6.5 Hz), 1.18-1.58 (8 H, m), 2.12 (2 H, tt, J ⁼2.0, 7.2 Hz), 2.17 (3 H, **s),** 2.41 (2 H, tt, J ⁼2.0, 7.6 Hz), 2.64 (2 H, t, $J = 7.6$ Hz); IR (neat) 1719, 1364, 1162 cm⁻¹. Anal. Calcd for $C_{12}H_{20}O: C$, 79.94; 11.18. Found: C, 79.82; H, 11.44.

Hydration of Acetylenic Ketones (General Procedure). Hydrations of the acetylenic ketones were carried out by the same procedure used for furan synthesis from β , γ -acetylenic ketone. Thus, acetylenic ketone (1 mmol) was added to a solution of $PdCl₂(MeCN)₂$ (13 mg, 0.05 mmol, 5 mol %) in 5 mL of acetonitrile containing 0.5 mL of water, and the whole was stirred at rt for 30 min or heated at reflux for 1-3 h. After the acetonitrile was evaporated, the residue was diluted with ether and washed with 1:1 mixture of brine and aqueous NH₃. The ethereal solution was dried (Na_2SO_4) and concentrated to give the product. The 'H NMR spectra showed that the products were pure and that no purification was needed.

3,3-Dimethyl-2,5-undecanedione: yield 201 mg (95%); 'H (8 H, m), 2.20 (3 H, *e),* 2.34 (2 H, t, J ⁼7.2 Hz), 2.37 (2 H, **s);** IR (neat) 1708,1364,1353,1149,1127,1065 cm-'. Anal. Calcd for $C_{13}H_{24}O:$ C, 73.53; H, 11.39. Found: C, 73.82; H, 11.61. NMR (CDC13) 6 0.88 (3 H, t, *J=* 6.5 Hz), 1.19 (6 H, **s),** 1.16-1.58

Reaction of 3 -Heptyn-2-one. 37 3-Heptyn-2-one (220 mg, 2) mmol) was treated with 26 mg (0.1 mmol, 5 mol %) of $PdCl₂$ - $(MeCN)_2$ in 10 mL of refluxing acetonitrile containing 10% of water for 5 h. Workup of the reaction mixture as above gave mainly starting 3-heptyn-2-one along with small amount of tarry material.

Registry No. 1a, 135645-94-2; 1b, 135645-95-3; 1c, 116373-17-2; 6a, 5312-82-3; 6b, 135645-96-4; 6c, 57044-52-7; 7a, 135645-97-5; 135646-00-3; PdCl₂(MeCN)₂, 14592-56-4; 2-(1-octynyl)cyclohexanol, 135645-92-0; **2-(l-butynyl)cyclohexanol,** 135645-93-1; **3,3-dimethyl-4-undecyn-2-one,** 135646-01-4; 2-methyl-3-chloro-1-propene, 563-47-3; (E) -4-chloro-2-butene, 4894-61-5; 2-(1-bu**tynyl)-2-methylcyclohexanone,** 17782-34-2; 3,3-dimethyl-2,5-undecanedione, 135646-03-6; 3-heptyn-2-one, 26059-43-8; 3-chloro-1-propene, 107-05-1; 3-chloro-l-butene, 563-52-0; 4-undecyn-2-01, 95061-41-9; 1-octyne, 629-05-0; 1-butyne, 107-00-6; propene oxide, 75-56-9; cyclohexene oxide, 286-20-4; 4-undecynoic acid, 54299- 11-5; 5-dodecyn-2-one, 40657-58-7; (Z)-4-chloro-2-butene, 4628- 21-1. 7b, 135645-98-6; (E)-7c, 135645-99-7; (Z)-7c, 135646-02-5; 7d,

⁽³⁴⁾ Yoehikoehi, H.; Takasaki, K.; Kobayashi, M.; Matsumoto, T. (35) Brooks, D. W.; Mazdiyasni, H.; Chakrabarti, S. *Tetrahedron Lett. Tetrahedron Lett.* **1979, 3489.**

^{1984,25, 1241.}

⁽³⁶⁾ Schuda, *P.* **F.; Bernstein, B.** *Synth. Commun.* **1984,** *14,* **293.**

⁽³⁷⁾ Normant, J. **F.; Bourgain, M.** *Tetrahedron Lett.* **1970, 2659.**